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Thus the best circulator configuration for broadest bandwidth (due
to minimum phase displacement of the modes) and lowest loss was
the single-sided unit having a ferrite rod length of 3\/4. Because
of the extremely nonlinear dependence of the propagation constants
on the normalized ferrite diameter at 60 GHz (m, = 0.24) there
are two design options with widely different geometries and bias
magnetic fields. The option having the longer and slimmer ferrite
rod required significantly less bias field due to a smaller demagnetiz-
ing factor.

IV. CONCLUSIONS

A simple design procedure for the widely used partial height ferrite
waveguide circulator has been formulated. It eliminates the need
for sophisticated computer programs and/or elaborate experimental
design techniques. Excellent agreement between theory and experi-
ment has been obtained with circulators operating in the “turnstile”
mode. Even greater isolation bandwidths can be achieved by stagger
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Guided Waves Along Graded Index Dielectric Rod ce=ea I>a (2)
where
RYOZO YAMADA anp YASUNOBU INABE o> e

Abstract—By a modification of the Kurtz and Streifer procedure,
the coupled second-order differential equations for the field com-~
ponents of guided modes along a graded index dielectric rod sur-
rounded by a homogeneous medium were solved directly. Using
the results, the eigenvalue equations which are consistent with those
of the simple core-cladding-type dielectric fiber in the region near
the cutoffs were obtained.

Optical transmission through a graded index glass fiber has been
given extensive attention. The theoretical study of guided waves in a
focusing medium has been done by many investigators. Among
them, Kurtz and Streifer have treated this problem on the basis of
the circular cylindrical coordinates and solved approximately the
linear homogeneous fourth-order differential equation, and applied
the results to the wave propagation guided by an enclosed circular
cylindrical graded index dielectric rod [1]-[3].

In this letter, we deal with the guided waves along a graded index
dielectric rod such as Selfoc. By a modification of the Kurtz and
Streifer procedure, we solve directly the coupled second-order
differential equations approximately and apply the results to the
guided waves along the rod. We adopt here the notations that have
been defined in their paper [17].

We assume that the dielectric constant distribution is in the

form
e = 51(1 - a(f)2>, F<a 1)
(43

and
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We express the axial components of electric and magnetic fields as
By = By exp [ j(wt — 82)]1 cos (ne + 0) 3)
Hy = Hopexp [j(ot — 2) ]sin (ne + 6) 4)

and further we write

By =[a(l —x)J V¢ and Hyg =[a(l —x)%/% (5)
where

x =1~ ¥k n = (ue/e)'’?

instead of

& = !l Y = —ieq Vi H;

in the paper [1].
We obtain the wave equations for ¢ and ¢ in the rod:

d’p 1 2z de n? —2ny
== D = B2(1 — 22) — — | & =
dzz—*-l:z—i—l—z2 sz]dz_l.l: ( ) z2]¢ 1 — 22

+ 2nxy  (6)
dxy 1 2 |dy 21 o ntl  —2n¢
@+[z+1—z2i|dz+|:b(l ) z2¢_1—22 ™

where
2= (8/x)"2(r/a)

Since x is small for the guided modes whose fields are bounded near
the region of maximum permittivity, we neglect the terms
2xz(dp/dz), 2nxy¢, and reduce (6) and (7) to

b2 = (kax)%./s.

d*¢ 1 2z |do . . n? 2ny
— - — — —— =0 8
dzz+l:z+1—zﬂ]dz+[b(1 @) 22 ¢+1—z2 ®)
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e 1, 2 N [ o ], 2o
dz,+[_z+ ]dz [b(l 2) ]¢+1_z2~o. ©)

We add (8) and (9):

Lo+ +|2+ Lot w +|{pa -2

dzz? 21—z dz¢ ¢
.

22 1

2n
] (¢ +¥) =0. (10)
— 2
We substract (9) from (8): '
d
;i‘zj(rb—% +[ —1-1———;;]3;@—‘1/) +[b (} — 2%

n? 2n

1——2](¢ —¥) =0. (11)
— 2

- -
If we write the solutions of (10) and (11) that are bounded atz = 0
as Gy and G, respectively, we can express ¢ and ¢ as

v = ZA:G;' ¢ = 2 (—1)M4,64 =12 (12)
Using the above expressions of Er,Hr and Maxwell’s equations,

the transverse components of the fields can be written as

E, = —jT(1 — x)Ycos (np +6) 2 (—1)7M4;®  (13)
Ey = jT(1 — x)Ysin (ng + 0) = 4;9; (14)
. T'e nx «
H, = —Jm[(l —x) ZA,%; +~z— EAJ'G:]
-sin (n¢ +6) (15)

. Te , nx
Hy = —Jm[(l —x#*) Z (=DA% — = zAfGi]
«cos (np +6) (16)
where
T = 812/ (kaediy®'?) ®; = M 17

z(1 — 2%

and ®; are solutions of the following equations which are bounded
atz = 0: "

&®;  1dd. 1)2
it} i .o.i_.’. + l:b2(1 — 2% — ﬁf———)—]qy =0, j=12 (18)
dz? z dz 2
and
d®, (nF1)
Gy = — bz[dz - . q’a] . (19)

The solutions &; are expressed in terms of Whittaker’s functions as
[e] -
®; = 27 My, (rr1y e (b22) . (20)

The axial components of the guided modes in the outer medium
are [:4]

By = Beit(1 — x)‘”“Kn(M) exp [ j(wt — B2) Jcos (ng +6) (21)
al4(l — x)us
’ N6

Hy =C K.(nr) exp [j(wt — B2) Isin (ng +6) (22)

where K, (\r) is the modified Bessel functions of the second kind:
Az = g2 — k2. (23)

The transverse components of the fields in the cladding can be ex-
pressed in terms of these By, H; (4], [5].

Subjecting these fields to the boundary conditions provides the
eigenvalue equation

_atm -l~n/w2
7+ — n/w2

74+ (14 A)m + nj/w
74+ 1+ A)g — n/w?

(24)
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where
_Ew)  wme) e
"= WK, @’ ™ DGy (1) ! = B2y A12G (1)
w =N, u=0blu=ka(ad)?, A=[a(l—35) — el

For n = 0, the two solutions of (18) coincide, ®; = &, and (24)
yields two elgenvalue equations for the axial symmetric TE and TM
modes:

7 41 = 0. TE modes 74+ (1 4+ Ay =0 TMmodes. (25)

Forn > 1. In the case where the difference between & and e is small,
we can write the two sets of roots of (24), which is a quadratic equa~
tion in 7, as

n 24 A n
o — A2
nt o 5 m +0(aY s 3

A
12 + 0(A%).

(26)

To verify the validity of these equations, we examine these equa~
tions in the region near the cutoffs of the various modes by taking
w — 0. In the case where « and e have a finite difference and §/a
is small, b becomes large asw — 0 (8% — k%) . In this case we use the
asymptotic expansions of Whittaker’s functions [67], and express
&1, ®; in terms of the Bessel functions as

& ~ 1 (b2) By ~ oy (b2). (27)
Then the eigenvalue equations (25) for n = 0 become
Ki(w) J1(v) K (w) Ji(v)
= — =—-(1+ 28
wKo (w) vdo(v) wKy (w) t+8 70 vd o () (28)
where
v = b2 |yme = ka(ax)!?
and the equations (26) for n > 1 become
Ks (w) 2 + Adw1(v)
= . 2
wK,, (w) 2 ouf,(v) (29)

These eigenvalue equations in the region near the cutoffs are con-
sistent with those of the simple core-cladding-type dielectric rod
(4], (5]

In the case of Selfoc, the value of u is of the order of several
hundreds, and the eigenvalues caleulated in the region far from the
cutoffs lie near the values that satisfy the equation

b=4m +2n, " m =12 (30)
and the eigenfunctions &; are
@, %= 2"lexp (—b22/2) Ln—yiea 1 (b2?) (31)

where L is the Laguerre polynomial.

In conclusion, we solved directly the coupled second-order dif-
ferential equations by a modification of the Kurtz and Streifer
procedure, and we may evaluate the effect of neglecting the terms
2xz (d¢/dz),2nxy in (6) by a perturbation method. Using the results,
we obtained the eigenvalue equations which are consistent with those
of the simple core-cladding-type dielectric rod in the region near
the cutoffs. Based upon the results of this study, we plan to in-
vestigate the optical transmission through the graded index glass
fibers.
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